High Speed Infrared Temperature Mapping of a Rotating Target

(Automotive Brake Rotor)

FORD

Dale Hartsock

James Fash

Tom Dalka

Greg Smith

Yun-Bo Yi

Rena Hecht

ORNL

Ralph Dinwiddie

Ford Motor Company,

Overview

- Introduction
- Infrared system descriptions
- Infrared system capabilities
- Comparison of the results
- System Utilization
- Conclusions

Brake System Being Studied

History

- Torque variation of brakes causes pulsations
- High speed IR CAMERA system indicated hot spots
- Needed to improve the capabilities for data analyses
- Initiated development of a high speed IR SENSOR system

High Speed IR CAMERA System

- Radiance-HS by Raytheon
- High frame rate with variable integration time of 14 milliseconds to 2 microseconds
- Snapshot mode
- External trigger
 - ORNL custom design time delay
- Real time video output

High Speed IR CAMERA System

INFRARED SENSOR System

View of Rotor from IR CAMERA

IR SENSOR System Installed

IR CAMERA Capabilities

- Real time visualization of section of rotor
- Time delay trigger permitted viewing of different sections of rotor
- Composite picture of the rotor could be generated in post test mode.
- Direct correlation of temperature data with other parameters difficult
- Temperature data sensitive to emissivity
- Filters limited low end to 200 C

IR CAMERA Composite Picture

IR SENSOR System Capabilities

- Temperatures less sensitive to emissivity
- Temperature capability to 100 C or less
- Excellent for post processing of the data
 - Correlation analyses
 - movies of hot spot formation
 - quick feedback on individual channels after test
- No real time feedback during test
- LITTLE GENERAL converts binary to EXCEL output which is manipulated by MATLAB for data analyses
- Large data files >90 MB

Fast Fourier Transform Analyses

Movie from IR SENSOR Sequence

Comparison of Results with the IR CAMERA & IR SENSOR System

Hot Spot Comparison

IR CAMERA System

IR SENSOR System

Utilization of System

- Hot spot data used to validate new Thermoelastic Instability (TEI) model and show previous models were non-conservative.
- Rotor cracking root cause determined

Why do rotors crack in overload conditions?

- 30% overload condition
- Alternate 4 high G with 4 low G stops
 - Cracks in less than 50 stops
- 200 High G stops no cracks
- 200 Low G stops no cracks
 - G = deceleration rate

Rotor Temperatures

Time Dependant Temperature inputs – Low G

Stress Results – Phase 1

Low G Stop

High G Stop

Stress Reversals

Stress in Lip for Phase 1

Utilization for Rotor Cracking

- IR sensor temperature data indicated bands of temperature on rotor
- IR sensor system provided data for FEA analyses to predict stresses
- Stress values successfully used to predict fatigue failures.
- Temperature banding caused by taper wear of the pads.

Conclusions

- Collaboration with ORNL in the development of the IR sensor system was very successful.
- The developed system has be used to validate models and identify root causes of problems, which is necessary to truly eliminate the problem.